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1. Introduction

® Theoretical guarantees for the convergence of AdaGrad for smooth,
nonconvex functions

e Convergence rate of AdaGrad-Norm

{ (log(T)/V/T) (stochastic setting).

optimal O(1/T) (non-stochastic setting).

® Strong robustness of AdaGrad-Norm to the hyper-parameters ( 1 and
bo)
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Introduction

Problem setting

Minimize a differentiable non-convex function F : R? — R via SGD.

® Stochastic Gradient Descent (SGD).

Starting from xo € R and 79 ; SGD iterates until convergence

Xt4+1 — Xt — ntG(Xt)a Nt > 0

® G(xt) : stochastic gradient

(E|G(xt)| = VF(x¢) and having bounded variance)
(x) = LS fi(x) : Loss ftn = (Full gradient) = X 3", V£;(x)

j.l

® Gi(x) = Vfi(x), it ~ Unif{1,2,--- ,m} = (efficient!)



1. Introduction

Notation

® ||-||: b-norm
® [T] = {071727"' ,T}
e A function F : RY — R has L-Lipschitz smooth gradient if

IVF(x) = VFW)II < Lllx =yl ¥x,y e RY

e |f L > 0 is the smallest number s.t. the above is satisfied, we refer to
L as the smoothness constant for F and we write F € (C{.
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Coordinate version of AdaGrad (Lafond et al., 2017)

It updates an entire vector of per-coefficient stepsizes.
d-scalar parameters b:(k)(k =1,2,---,d)
e Coordinate version
@ At the t-th iteration,

Ge(k)

Xe41(k) = xe(k) — nbt+1(k)

(k=1,2,---,d) (n > 0).

brs1(K)? = be(k)? + (VF(xt))?, (noiseless setting).
e b:(k)? + (Ge(k)))?,  (noisy gradient setting).
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Norm version of AdaGrad (AdaGrad-Norm)

AdaGrad-Norm updates only a single (scalar) stepsize according to the
sum of squared gradient norms observed so far.
® AdaGrad-Norm
@ Initialize a single scalar by > 0

@® At the t-th iteration, observe the r.v. G; s.t. E[G:] = VF(x¢)
and iterate

G(x .
ronexe = with B, = B+ 160 (> 0)
t+
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Previous work

® Theoretical guarantees of convergence for AdaGrad in the setting of
online convex optimization( Duchi et al., 2011)

e Guarantees of convergence in the non-convex setting( Wu et al.,
2018) — only for the batch setting

Future work

e Convergence guarantees for AdaGrad-Norm over smooth, nonconvex
functions, in both the stochastic and deterministic settings.
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2. AdaGrad-Norm Convergence

Algorithm 1 AdaGrad-Norm

1: Input : Initialize xo € RY, b; > 0,7 > 0 and the total iterations T
2:fort=1,2,---, T do

3:  Generate &1 and Gy—1 = G(x¢—1,&¢—1)

4 b7 bi_g +||Ge-1]

5. Xt 4 Xe—1 — bﬂth,1

6: end for

At the kth iteration, we observe a stochastic gradient G(xk,&x) = Gk and
Egk[G(Xk,fk)] = VF(Xk) is UE of VF(Xt).

[Assumptions]
@ The random vectors &, I & and & 1L x¢ (k,/=10,1,2,---)
® Ee [||G(xk, &) — VF(xi)[)?] < 02
© ||VF(X)H2 < 72 uniformly.



2. AdaGrad-Norm Convergence

Theorem 2.1 (AdaGrad-Norm: convergence in stochastic setting)

Suppose F € C} and F* = inf,F(x) > —oo. Suppose that the r.v.s
Gy, (I > 0), satisfy the above assumptions. Then with probability 1 — 4,

2by 2v2(y+0), Q 8Q 4Q  8Qo

. 2 < = =
Ier{#El]HVF(X,)H < min{( =+ T )(53/2’( 5 +2by) T5+53/2ﬁ}
where
F(xo) — F* 4 L, 20T(y?+o°
Q= (XOL + U;n fog(** (12+U)+10)-
0



2. AdaGrad-Norm Convergence

Theorem 2.1 (AdaGrad-Norm: convergence in stochastic setting)

® AdaGrad-Norm converges for any 1 > 0 and starting from any value
of by > 0.

® Good strategy for setting hyperparameters :
Given knowledge of F*, set n = F (xg) — F* and by > 0 to be very
small.

e With a priori knowledge of L and o2,

1 1
n:min{L,m}, JZO,].,,T—].

then with probability 1 — ¢

. 2L(F(0) = F) | (L+2(F(x0) = F))o
(Jin IVF )ll* < ——F——+ T |



2. AdaGrad-Norm Convergence

Theorem 2.2 (AdaGrad-Norm: convergence in deterministic setting)

Suppose F € C} and F* = infyF(x) > —oo. Consider AdaGrad-Norm in
deterministic setting with following update,

X = X1 = L VF(xo1), B2 = by + [V F ()|

t

then min [[VF(xt)||? < e after

x0)— *)2 x0)— F* )
(1) T [% (4(F( (:7)2 ) +2bO(F(n0) F)>-‘ if by >l
@) T=1+

— * 2

E (2L(F( o) = F)+ (HEED 400 ) 4 (1L (14 o)~ 6 )
if bg < nL. Here Cp, =1+ 2log <%>




2. AdaGrad-Norm Convergence

Theorem 2.2 (AdaGrad-Norm: convergence in deterministic setting)

® AdaGrad-Norm convergence holds for any choice of parameters by
and 7.

® Good strategy for setting hyperparameters :
Given knowledge of L and F*, set n = F (xg) — F* and by = L.



2. AdaGrad-Norm Convergence

Lemma 2.1

Suppose that F € C} and F* = inf,F(x) > —oo. Consider gradient

descent with constant stepsize, xt11 = X — VFIE’“)

If b> L, then TTm |[VF(x¢)||?> < € after at most a number of steps
te

2b(F(x0) — F7)

Alternatively, if b < é , then convergence is not guaranteed at all -
gradient descent can oscillate or diverge.
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3. Proof of Theorem 2.1

Theorem 2.1 (AdaGrad-Norm: convergence in stochastic setting)

Suppose F € C} and F* = inf,F(x) > —oo. Suppose that the r.v.
Gy, | > 0, satisfy the above assumptions. Then with probability 1 — 9,

2by 2\f('y+a) Q 89 4Q  8Qo

F(x)|* < r
iy [IVFCOIF < mint G e O 200 57 G )
where
Fxo) — F* 4o
o- (x0) — F +40+nLlog(20T(’Yz+U ) +10).
n 2 by



3. Proof of Theorem 2.1

Lemma 3.1 (Descent Lemma)

Let F € (Ci . Then,

L
Fx) = Fly) + (VE(y), x = y) + S [Ix -yl
Lemma 3.2

For any non-negative a1,--- ,ar, and a; > 1, we have

-
Z < log(z aj)+1
i=1

_ ,131



3. Proof of Theorem 2.1

Proof
Let F = F(x¢) and VF; = VF(x;). By Lemma 3.1, for t > 0,

Ft+1 Ft < G >
_ VFi, —— ) + G
IVFe|*  (VF:,VF—Gr) | nL||Ge”
= — —|— 5
bti1 b1 2b; 4

Since by+1 and G; are correlated and thus for the condi. expectation

-0

Eg,

|:<VFt7VFt_Gt>:|#Eﬁj“VFtaVFt_Gt)]_ 1

biy1 bt 11 bt 11



3. Proof of Theorem 2.1

Proof

We use the estimate ———L— as a surrogate for E¢ [1] to
BVl o2 8 l5]

proceed. Condition on &1, -+ ,&;—1 and take expectation w.r.t &,

0— Ee, [(VF:, VF: — Gp)] & (VF,VF; — G;)

&t
B+ [VF? + o2 VB 4 [VF? + o

Ee, [Fei1]—Ft
n

_ _ 2
<5, [Sngree_ snsna | g (1067 g [l

br+1 VB A+ VF[?+02 1

2 2
—F -1 F _ I VFe| E [”GtH :|
: <\/b%+|va||2+o2 "f“) Whe G } VIR 2 B



3. Proof

Proof

< Eg,

of Theorem 2.1

1 1

\/b§+ VAP +02 bt
(HGtH - HVFtH) (HGtH + HVFtH) —o?

bt+1\/b? + ||VFtH2 + 02 (\/b% + HVFtHZ + 02+ bt+1)
Gl —IVAIL o
beiry/ B + [VFIP + 02 besay/B + V| + 02

1 1
~ 5 (VF:, Gy)
[\t + VR +02

Gl = IVF Gl [V Fe

IN

o ||Gel| VF|

+ Ee,

| beray/82 + VR + o2

bt+1\/b§ + | VFel|? + 02

|

(2)



3. Proof of Theorem 2.1

Proof
. . . >\ 2 1 2 .
By applying Ehe |nequaI|t>|/|:l|:|) < 5a° + ?Gb” \ﬂ/thE .
20 t tl|— t t .
=20 a= and b = 2ot the first term of
VRV o2 O b BEHIVAIIN

the RHS in (2) can be bounded as

[Gell = [IVFel [ Gell [|V Fel
bt+1\/b2 + | VFe|]? + 02

Ee,

¢H+MVHH+JWVHHE&MWMfHVHm]
b2 + | VF|? 4 02

; ; 3)
o E&|;m]
VB +IVRP o2 Lo
Fel)? 2
. IVF + oE,, uﬂ|l
4\/b§+ IVFe|)? + 02 t+1




3. Proof of Theorem 2.1

Proof

Similarly, applying the inequality ab < %32 + %bz with

A= —2 4= UHG*”, and b = w, the second term
B2-+{|V Fe P40 Bt B2+ VFe|[P+02

of the RHS in (2) is bounded by

o IVF Gl
berr\/B + [ VR + 02

Ee

IVF|*

4/ + [VFP 402
@)

1Gell?
olEe, [ 12
t+1

<

+




3. Proof of Theorem 2.1

Proof
Thus, putting inequalities (3) and (4) back into (2) gives

1 1

]Eft - b <VIE1_L7 Gt>
\/b$ VR +02 P
2 2
VF
< 20E,, IIbGZtII [VFell '
1] 2B+ VR 4o

and, therefore, back to (1),

Be (Pl = Fe ik (1G] uc;tnzl_ IvF?
" 2 bii1 bii1 2\/b% +IVF|? + o2
Rearranging,
IVFe|* cFemBelFen]  4otalp IGe]1”
o\ /07 IVFP+o? T 2 B




3. Proof of Theorem 2.1

Proof

We take the expectation w.r.t. £&_1,&t—2,...,&1, and arrive at the
recursion( Law of total expectation )

g IVEF | _BIAI-BlFul oy f1G
2(/62 + [IVFIP + 02 " F1

Taking t = T and summing up from k=0to k=T —1

T-1 2
F
B N

= (262 +IVA? +02]

Fo—F* 4 L 2
< 0 n o+ EZ |G2k||
n 2 biiq
Fo—F* 4 L 20T (02 + 2
<20 i/ Ly 10+—(02 )
n 2 bo

where the second inequality we apply Lemma (3.2)

|



3. Proof of Theorem 2.1

Proof

and then Jensen's inequality to bound the summation:

T-1 ||GH2 T-1
E [ K ]gE 1+|0g<1+Z]Gk”2/bg>]

k=0
2 2
< log (10 + 207—(‘7"'7)> ]

b

since
E[6f — b _y] <E[l|Gel?]

< 2B [|Gc — VFl?] + 2E IV FilP]
< 202 + 242



3. Proof of Theorem 2.1

Proof of the 1st bound for Theorem 2.1
For the term on LHS in equation (5), we apply Hélder's inequality,

EXY] (E\X%)g

(E|Y )3
: 3
with X = [ —A¥EL_ ) and Y:< b2+ ||VF, 2+02>
( B2+]|V Fi|*+02 \/k [V F||
: (21vh)’
k
E IVl N

2y/b2 + [ VFel? + o2 2\/151 [b§+\|VFk||2+a2]

(EIvAI3)’

B 2\/b§ +2(k+1) (2 + 0?)

where the last inequality is due to inequality (7).



3. Proof of Theorem 2.1

Proof of the 1st bound for Theorem 2.1
Thus (5) arrives at the inequality

T minge(r_y) (E [HVFngDg

2\/83 +2T (2 + 02)

Fo—F* 4 L 2T (02 + +2
<cho- P toth (Iog(l—i-(g_m)—i-l).

- n 2 b3

Multiplying by MW, the above inequality gives
31\ 3 2by | 2v/2(y + o)
n (B[IVA)E])" < (2 + 252 ¢
ker[”r"ll]< IVEIE]) <\ +—F F
Cr

Cr

Fo—F* 4 L 20T (o2 ++2
SR S ik Iog(w+10>.

" 2 bg



3. Proof of Theorem 2.1

Proof of the 1st bound for Theorem 2.1
Finally, the bound is obtained by Markov's Inequality:

. cr\ . /3 cr\*?
(oo 2) e o, (5 (5

E [ minyer—y [Vl )

c?

<6

<9

where in the second step Jensen's inequality is applied to the concave
function ¢(x) = ming hy(x).



3. Proof of Theorem 2.1

Proof of the 2nd bound for Theorem 2.1
First, observe with probability 1 — ¢’ that

T-1
To?
Zo IVF — Gi||* < <

Let Z =3/ IVFi|?, then

T-2
b7 4 +IVFralP + 0 =05+ > _ G+ [VFr_a|® + 0°
i=0

T-1 T-2
<B+23 VA2 +23 [VFi - G2 + 02
i=0 i=0

o2

§b§+22+2T5,



3. Proof of Theorem 2.1

Proof of the 2nd bound for Theorem 2.1
In addition, from inequality (5), i.e.,

Yico IV
2y/b%_, + IVFralP + 02

— P el 20T (02 + 42
S Ly BTMELA Gk ) PR
n 2 by

E

we have with probability 1 — § — ¢’ that

T-1 2
G SRR z

O /B +IVFralP+o? 2/ +2Z+2T02/8



3. Proof of Theorem 2.1

Proof of the 2nd bound for Theorem 2.1

That is equivalent to solve the following quadratic equation

8C2 4C2 2T
AF<b0+ U)éo

Z2

52 52 o'
which gives

4C? 16CE  4CE [, 2To2
Z< 5 +\/ TR by +

8C2  2Ck <bo+ \/2TJ>

5 Ve

G 5
Let § =& = ¢. Replacing Z with S 23 IVFi||? and dividing both side
with T we have with probability 1 — §

: 4CF 8Cr 80 Cr
keTT”ll]HkaH = T5 (5+2b0> 53/2\/T
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4. Proof of Theorem 2.2

Theorem 2.2 (AdaGrad-Norm: convergence in deterministic setting)

Suppose F € C} and F* = inf,F(x) > —oc. Consider AdaGrad-Norm in
deterministic setting with following update,

X = Xto1 = L VF(xo1), B2 = by + [V F ()|
t

then min ||[VF(x)||]> < ¢ after
te[T]
)2 *
(1) T=1+ [% (4(F<X37)2—F 2 | 2(Flo)F )ﬂ if by > L
(2) T=1+
1 * 2(F(x0)—F") 2 2 2
L(2L(F (x0) = F) + (2ECED 4 1.Cy )+ (L) (1+ Cay) — B

n
if bp < L. Here Cp, =1+ 2log (%OL)



4. Proof of Theorem 2.2

Lemma 4.1

Fix £ € (0,1] and C > 0. For any non-negative ag, a1, . . ., the dynamical
system
bo > 0; bfﬂ = b2 + a

-1

has the property that after T = {
k=0:T—1ak < €, or by > nL.

W + 1 iterations, either min

2_ 12
=-After an initial number of steps T = [Wfbﬂ + 1, either we have

already reached a point x s.t. |[VF (x¢)||* < e, or else by > L



4. Proof of Theorem 2.2

Lemma 4.2

Suppose F € C} and F* = inf, F(x) > —oc. Denote by ko > 1 the first
index such that by, > nL. Then for all by <nlL,k=0,1,...,k —1

2y by
Fioo1— F* < Fo—F*+ L= (1+2log | 2Rt
2 bo

= {F (xx)}r—p is a bounded sequence for any value of by > 0



4. Proof of Theorem 2.2

Proof
By Lemma 4.1, if min jc[7_yj IVF (xi)||> < e is not satisfied after
T = {MW + 1 steps, then there exits a first index 1 < kg < T s.t.

b% > L. By Lemma 3.1, for j > 0

L 2
Froti < Fio+j—1 + (VFiorj—1, (Mot = Xkotj—1)) + 51| (ko = Xio-+j-1)l

n nlL 2
= Frgsjo1— 1 (1- Vo
oty bko+j< 2bko+j> IV Pt

j
Ui 2
< Fio—1 — |V Fro+e—1]
2y, Ve
J

n 2
< Flo-17 54 > IV Figre-1l?.
J =0



4. Proof of Theorem 2.2

Proof
Let Z =340 L |[VF|?, it follows that

2(Fip—1 — F*) >2(F0—Flvl) Y i ko— 1||VF/<H V4

Ui n by /Z+bko L

Solving the quadratic inequality for Z,

M-1 * *
Z ”ka||2 < 4(Fk0—1 - F )2 + 2(Fk0—1 - F )bko—l
k=ko—1 a 772 N

If ko = 1, the stated result holds by multiplying both side by ﬁ
Otherwise, kg > 1 From Lemma 4.2, we have

2] L
Fioo1— F*<Fo—F + L= (1+4210g (=
2 bo



4. Proof of Theorem 2.2

Proof
Replacing Fy,—1 — F* in (15) by above bound, we have

M-1

> VAP

k=ko—1

(O e (2 (7))

L
+ 2L (Fo — F*) + (nL)? (1 +2log (Z)) = Cum
Thus, we are assured that

min  [|[VF > <e
k=0:T+M-1

L27b2
where TgT‘)and M:%. [ |



4. Proof of Theorem 2.2

Proof of Lemma 4.1
If bg > nC, we are done. Else by < C. Let T be the smallest integer such

2_ 12
that T > hi Suppose bt < C. Then
2 2 2 — 2 C? - bg
C > b5 =5 ax > b T min a = min  a, <
T o+ kz—:_o K ot ke[TIfl] k k€[7|'71] k= T

2R . .
Hence, for T > — L Mingen-1) 3k < €. Suppose minyc[T_1) a > €,
then from above inequalities we have bt > C.




4. Proof of Theorem 2.2

Proof of Lemma 4.2

Suppose kg > 1 is the first index such that by, > nL. By Lemma 3.1, for
J<hko—1

nL 2
Fip < F— F
1 < bj+1 (1= 52 ) 195

2

26711

IIVF I? < Fo +Z IVF|®

J+1 =0

ko—2
X (IVFill /bo)?

-2 i=0 bi2+1 2 i=0 Zi O(HVFEH/bO)2+1

ko—
Y\l
by

ble—1
1+ log ’ [
by

) by Lemma 3.2

INA
‘3
N
[’\
VR /:\
+
o
0]
VR
—
+
~
I
o
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