AdaGrad stepsizes : sharp convergence over nonconvex landscapes, from any initialization

Rachel Ward, Xiaoxia Wu and Léon Bottou (2018)

Presented by Jiin Seo June 3, 2019

Outline

1. Introduction

- 2. AdaGrad-Norm Convergence
- 3. Proof of Theorem 2.1

4. Proof of Theorem 2.2

Outline

1. Introduction

2. AdaGrad-Norm Convergence

3. Proof of Theorem 2.1

4. Proof of Theorem 2.2

- Theoretical guarantees for the convergence of AdaGrad for smooth, nonconvex functions
- Convergence rate of AdaGrad-Norm

$$\begin{cases} \mathcal{O}(\log(T)/\sqrt{T}) & \text{(stochastic setting).} \\ \text{optimal } \mathcal{O}(1/T) & \text{(non-stochastic setting).} \end{cases}$$

• Strong robustness of AdaGrad-Norm to the hyper-parameters (η and b_0)

Problem setting

Minimize a differentiable non-convex function $F : \mathbb{R}^d \to \mathbb{R}$ via SGD.

• Stochastic Gradient Descent (SGD). Starting from $x_0 \in \mathbb{R}^d$ and η_0 ; SGD iterates until convergence

$$x_{t+1} \leftarrow x_t - \eta_t G(x_t), \quad \eta_t > 0$$

- $G(x_t)$: stochastic gradient $(\mathbb{E}|G(x_t)| = \nabla F(x_t)$ and having bounded variance)
- $F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$: Loss ftn \Rightarrow (Full gradient) $= \frac{1}{m} \sum_{i=1}^{m} \nabla f_i(x)$
- $G_t(x) = \nabla f_{i_t}(x), i_t \sim Unif\{1, 2, \dots, m\} \Rightarrow (efficient!)$

Notation

- $||\cdot|| : I_2$ -norm
- $[T] := \{0, 1, 2, \cdots, T\}$
- A function $F: \mathbb{R}^d \to \mathbb{R}$ has L-Lipschitz smooth gradient if

$$||\nabla F(x) - \nabla F(y)|| \le L||x - y|| \quad \forall x, y \in \mathbb{R}^d$$

• If L > 0 is the smallest number s.t. the above is satisfied, we refer to L as the smoothness constant for F and we write $F \in \mathbb{C}^1_L$.

Coordinate version of AdaGrad (Lafond et al., 2017)

It updates an entire vector of per-coefficient stepsizes. d-scalar parameters $b_t(k)(k = 1, 2, \dots, d)$

- Coordinate version
 - 1 At the t-th iteration,

$$x_{t+1}(k) \leftarrow x_t(k) - \eta \frac{G_t(k)}{b_{t+1}(k)} \quad (k = 1, 2, \dots, d) \ (\eta > 0).$$

$$b_{t+1}(k)^2 = \begin{cases} b_t(k)^2 + (\nabla F(x_t))_k^2, & \text{(noiseless setting)}. \\ b_t(k)^2 + (G_t(k)))^2, & \text{(noisy gradient setting)}. \end{cases}$$

Norm version of AdaGrad (AdaGrad-Norm)

AdaGrad-Norm updates only a single (scalar) stepsize according to the sum of squared gradient norms observed so far.

- AdaGrad-Norm
 - 1 Initialize a single scalar $b_0 > 0$
 - **2** At the t-th iteration, observe the r.v. G_t s.t. $\mathbb{E}[G_t] = \nabla F(x_t)$ and iterate

$$x_{t+1} \leftarrow x_t - \eta \frac{G(x_t)}{b_{t+1}}$$
 with $b_{t+1}^2 = b_t^2 + ||G(x_t)||^2$, $(\eta > 0)$

Previous work

- Theoretical guarantees of convergence for AdaGrad in the setting of online convex optimization(Duchi et al., 2011)
- Guarantees of convergence in the non-convex setting(Wu et al., 2018) \rightarrow only for the batch setting

Future work

• Convergence guarantees for AdaGrad-Norm over smooth, nonconvex functions, in both the stochastic and deterministic settings.

Outline

1. Introduction

2. AdaGrad-Norm Convergence

3. Proof of Theorem 2.1

4. Proof of Theorem 2.2

Algorithm 1 AdaGrad-Norm

- 1: **Input**: Initialize $x_0 \in \mathbb{R}^d$, $b_t > 0$, $\eta > 0$ and the total iterations T
- 2: **for** $t = 1, 2, \dots, T$ **do**
- 3: Generate ξ_{t-1} and $G_{t-1} = G(x_{t-1}, \xi_{t-1})$
- 4: $b_t^2 \leftarrow b_{t-1}^2 + ||G_{t-1}||^2$
- 5: $x_t \leftarrow x_{t-1} \frac{\eta}{b_t} G_{t-1}$
- 6: end for

At the kth iteration, we observe a stochastic gradient $G(x_k, \xi_k) = G_k$ and $\mathbb{E}_{\xi_k}[G(x_k, \xi_k)] = \nabla F(x_k)$ is UE of $\nabla F(x_t)$.

[Assumptions]

- **1** The random vectors $\xi_k \perp \!\!\! \perp \xi_l$ and $\xi_k \perp \!\!\! \perp x_k \ (k,l=0,1,2,\cdots)$
- **2** $\mathbb{E}_{\xi_k}[||G(x_k,\xi_k) \nabla F(x_k)||^2] \leq \sigma^2$
- 3 $||\nabla F(x)||^2 \le \gamma^2$ uniformly.

Theorem 2.1 (AdaGrad-Norm: convergence in stochastic setting)

Suppose $F \in \mathbb{C}^1_L$ and $F^* = inf_x F(x) > -\infty$. Suppose that the r.v.s $G_l, (l \geq 0)$, satisfy the above assumptions. Then with probability $1 - \delta$,

$$\min_{I \in [T-1]} ||\nabla F(x_I)||^2 \leq \min\{ (\frac{2b_0}{T} + \frac{2\sqrt{2}(\gamma + \sigma)}{\sqrt{T}}) \frac{\mathcal{Q}}{\delta^{3/2}}, (\frac{8\mathcal{Q}}{\delta} + 2b_0) \frac{4\mathcal{Q}}{T\delta} + \frac{8\mathcal{Q}\sigma}{\delta^{3/2}\sqrt{T}} \}$$

where

$$Q = \frac{F(x_0) - F^*}{\eta} + \frac{4\sigma + \eta L}{2} log(\frac{20T(\gamma^2 + \sigma^2)}{b_0^2} + 10).$$

Theorem 2.1 (AdaGrad-Norm: convergence in stochastic setting)

- AdaGrad-Norm converges for any $\eta > 0$ and starting from any value of $b_0 > 0$.
- Good strategy for setting hyperparameters : Given knowledge of F^* , set $\eta = F(x_0) F^*$ and $b_0 > 0$ to be very small.
- With a priori knowledge of L and σ^2 ,

$$\eta = \min\left\{rac{1}{L}, rac{1}{\sigma\sqrt{T}}
ight\}, \quad j = 0, 1, \dots, T-1$$

then with probability $1-\delta$

$$\min_{\ell \in [T-1]} \|\nabla F\left(x_{\ell}\right)\|^{2} \leq \frac{2L\left(F\left(x_{0}\right) - F^{*}\right)}{T\delta} + \frac{\left(L + 2\left(F\left(x_{0}\right) - F^{*}\right)\right)\sigma}{\delta\sqrt{T}}.$$

Theorem 2.2 (AdaGrad-Norm: convergence in deterministic setting)

Suppose $F \in \mathbb{C}^1_L$ and $F^* = inf_x F(x) > -\infty$. Consider AdaGrad-Norm in deterministic setting with following update,

$$x_t = x_{t-1} - \frac{\eta}{b_t} \nabla F(x_{t-1}), \quad b_t^2 = b_{t-1}^2 + ||\nabla F(x_{t-1})||^2$$

then
$$\min_{t \in [T]} ||\nabla F(x_t)||^2 \le \varepsilon$$
 after

(1)
$$T = 1 + \left\lceil \frac{1}{\varepsilon} \left(\frac{4(F(x_0) - F^*)^2}{\eta^2} + \frac{2b_0(F(x_0) - F^*)}{\eta} \right) \right\rceil$$
 if $b_0 \ge \eta L$

(2)
$$T = 1 +$$

$$\left[\frac{1}{\varepsilon}\left(2L(F(x_0)-F^*)+\left(\frac{2(F(x_0)-F^*)}{\eta}+\eta LC_{b_0}\right)^2+(\eta L)^2(1+C_{b_0})-b_0^2\right)\right]$$

if
$$b_0 < \eta L$$
. Here $C_{b_0} = 1 + 2\log\left(\frac{\eta L}{b_0}\right)$.

Theorem 2.2 (AdaGrad-Norm: convergence in deterministic setting)

- AdaGrad-Norm convergence holds for any choice of parameters b₀ and η.
- Good strategy for setting hyperparameters : Given knowledge of L and F^* , set $\eta = F(x_0) F^*$ and $b_0 = \eta L$.

Lemma 2.1

Suppose that $F \in \mathbb{C}^1_L$ and $F^* = \inf_x F(x) > -\infty$. Consider gradient descent with constant stepsize, $x_{t+1} = x_t - \frac{\nabla F(x_t)}{b}$. If $b \geq L$, then $\min_{t \in [T-1]} ||\nabla F(x_t)||^2 \leq \varepsilon$ after at most a number of steps

$$T = \frac{2b(F(x_0) - F^*)}{\varepsilon}$$

Alternatively, if $b \leq \frac{L}{2}$, then convergence is not guaranteed at all -gradient descent can oscillate or diverge.

Outline

1. Introduction

- 2. AdaGrad-Norm Convergence
- 3. Proof of Theorem 2.1

4. Proof of Theorem 2.2

Theorem 2.1 (AdaGrad-Norm: convergence in stochastic setting)

Suppose $F \in \mathbb{C}^1_L$ and $F^* = \inf_x F(x) > -\infty$. Suppose that the r.v. $G_l, l \geq 0$, satisfy the above assumptions. Then with probability $1 - \delta$,

$$\min_{I\in[\mathcal{T}-1]}||\nabla F(x_I)||^2 \leq \min\{(\frac{2b_0}{T} + \frac{2\sqrt{2}(\gamma+\sigma)}{\sqrt{N}})\frac{\mathcal{Q}}{\delta^{3/2}}, (\frac{8\mathcal{Q}}{\delta} + 2b_0)\frac{4\mathcal{Q}}{T\delta} + \frac{8\mathcal{Q}\sigma}{\delta^{3/2}\sqrt{T}}\}$$

where

$$Q = \frac{F(x_0) - F^*}{\eta} + \frac{4\sigma + \eta L}{2} log(\frac{20T(\gamma^2 + \sigma^2)}{b_0^2} + 10).$$

Lemma 3.1 (Descent Lemma)

Let $F\in\mathbb{C}^1_L$. Then,

$$F(x) \le F(y) + \langle \nabla F(y), x - y \rangle + \frac{L}{2} ||x - y||^2.$$

Lemma 3.2

For any non-negative a_1, \dots, a_T , and $a_1 \ge 1$, we have

$$\sum_{l=1}^{T} \frac{a_{l}}{\sum_{i=1}^{l} a_{i}} \leq \log(\sum_{i=1}^{T} a_{i}) + 1.$$

Proof

Let $F_t = F(x_t)$ and $\nabla F_t = \nabla F(x_t)$. By Lemma 3.1, for $t \ge 0$,

$$\begin{split} \frac{F_{t+1} - F_t}{\eta} &\leq -\left\langle \nabla F_t, \frac{G_t}{b_{t+1}} \right\rangle + \frac{\eta L}{2b_{t+1}^2} \|G_t\|^2 \\ &= -\frac{\|\nabla F_t\|^2}{b_{t+1}} + \frac{\left\langle \nabla F_t, \nabla F_t - G_t \right\rangle}{b_{t+1}} + \frac{\eta L \|G_t\|^2}{2b_{t+1}^2} \end{split}$$

Since b_{t+1} and G_t are correlated and thus for the condi. expectation

$$\mathbb{E}_{\xi_j}\left[\frac{\langle \nabla F_t, \nabla F_t - G_t \rangle}{b_{t+1}}\right] \neq \frac{\mathbb{E}_{\xi_j}\left[\langle \nabla F_t, \nabla F_t - G_t \rangle\right]}{b_{t+1}} = \frac{1}{b_{t+1}} \cdot 0$$

Proof

We use the estimate $\frac{1}{\sqrt{b_t^2+||\nabla F_t^2||+\sigma^2}}$ as a surrogate for $\mathbb{E}_{\xi_t}[\frac{1}{b_{t+1}}]$ to proceed. Condition on ξ_1,\cdots,ξ_{t-1} and take expectation w.r.t ξ_t ,

$$0 = \frac{\mathbb{E}_{\xi_t} \left[\left\langle \nabla F_t, \nabla F_t - G_t \right\rangle \right]}{\sqrt{b_t^2 + \left\| \nabla F_t \right\|^2 + \sigma^2}} = \mathbb{E}_{\xi_t} \left[\frac{\left\langle \nabla F_t, \nabla F_t - G_t \right\rangle}{\sqrt{b_t^2 + \left\| \nabla F_t \right\|^2 + \sigma^2}} \right]$$

$$\frac{\mathbb{E}_{\xi_{t}}[F_{t+1}] - F_{t}}{\eta}$$

$$\leq \mathbb{E}_{\xi_{t}} \left[\frac{\langle \nabla F_{t}, \nabla F_{t} - G_{t} \rangle}{b_{t+1}} - \frac{\langle \nabla F_{t}, \nabla F_{t} - G_{t} \rangle}{\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}}} \right] - \mathbb{E}_{\xi_{t}} \left[\frac{\|\nabla F_{t}\|^{2}}{b_{t+1}} \right] + \mathbb{E}_{\xi_{t}} \left[\frac{L\eta \|G_{t}\|^{2}}{2b_{t+1}^{2}} \right]$$

$$= \mathbb{E}_{\xi_{t}} \left[\left(\frac{1}{\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}}} - \frac{1}{b_{t+1}} \right) \langle \nabla F_{t}, G_{t} \rangle \right] - \frac{\|\nabla F_{t}\|^{2}}{\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}}} + \frac{\eta L}{2} \mathbb{E}_{\xi_{t}} \left[\frac{\|G_{t}\|^{2}}{b_{t+1}^{2}} \right]$$

$$(1)$$

Proof

$$\begin{split} \frac{1}{\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}}} - \frac{1}{b_{t+1}} \\ &= \frac{(\|G_{t}\| - \|\nabla F_{t}\|) (\|G_{t}\| + \|\nabla F_{t}\|) - \sigma^{2}}{b_{t+1}\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}} \left(\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}} + b_{t+1}\right)} \\ &\leq \frac{\|G_{t}\| - \|\nabla F_{t}\|\|}{b_{t+1}\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}}} + \frac{\sigma}{b_{t+1}\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}}} \\ &\mathbb{E}_{\xi_{t}} \left[\left(\frac{1}{\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}}} - \frac{1}{b_{t+1}}\right) \langle \nabla F_{t}, G_{t} \rangle \right] \\ &\leq \mathbb{E}_{\xi_{t}} \left[\frac{\|G_{t}\| - \|\nabla F_{t}\| \|G_{t}\| \|\nabla F_{t}\|}{b_{t+1}\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}}} \right] + \mathbb{E}_{\xi_{t}} \left[\frac{\sigma \|G_{t}\| \nabla F_{t}\|}{b_{t+1}\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}}} \right] \end{split}$$

Proof

By applying the inequality $ab \leq \frac{\lambda}{2}a^2 + \frac{1}{2\lambda}b^2$ with $\lambda = \frac{2\sigma^2}{\sqrt{b_t^2 + \|\nabla F_t\|^2 + \sigma^2}}, a = \frac{\|G_t\|}{b_{t+1}}, \text{ and } b = \frac{\|G_t\| - \|\nabla F_t\|\|\nabla F_t\|}{b_t^2 + \|\nabla F_t\|\|},$ the first term of the RHS in (2) can be bounded as

$$\mathbb{E}_{\xi_{t}} \left[\frac{\|G_{t}\| - \|\nabla F_{t}\| \|G_{t}\| \|\nabla F_{t}\|}{b_{t+1} \sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}}} \right] \\
\leq \frac{\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}} \|\nabla F_{t}\|^{2} \mathbb{E}_{\xi_{t}} \left[(\|G_{t}\| - \|\nabla F_{t}\|)^{2} \right]}{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}} \\
+ \frac{\sigma^{2}}{\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}}} \mathbb{E}_{\xi_{t}} \left[\frac{\|G_{t}\|^{2}}{b_{t+1}^{2}} \right] \\
\leq \frac{\|\nabla F_{t}\|^{2}}{4\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}}} + \sigma \mathbb{E}_{\xi_{t}} \left[\frac{\|G_{t}\|^{2}}{b_{t+1}^{2}} \right].$$
(3)

Proof

Similarly, applying the inequality $ab \leq \frac{\lambda}{2}a^2 + \frac{1}{2\lambda}b^2$ with $\lambda = \frac{2}{\sqrt{b_t^2 + \|\nabla F_t\|^2 + \sigma^2}}, a = \frac{\sigma\|G_t\|}{b_{t+1}},$ and $b = \frac{\|\nabla F_t\|}{\sqrt{b_t^2 + \|\nabla F_t\|^2 + \sigma^2}},$ the second term of the RHS in (2) is bounded by

$$\mathbb{E}_{\xi_{t}}\left[\frac{\sigma \|\nabla F_{t}\| \|G_{t}\|}{b_{t+1}\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}}}\right] \leq \sigma \mathbb{E}_{\xi_{t}}\left[\frac{\|G_{t}\|^{2}}{b_{t+1}^{2}}\right] + \frac{\|\nabla F_{t}\|^{2}}{4\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}}}.$$
(4)

Proof

Thus, putting inequalities (3) and (4) back into (2) gives

$$\mathbb{E}_{\xi_{t}} \left[\left(\frac{1}{\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}}} - \frac{1}{b_{t+1}} \right) \langle \nabla F_{t}, G_{t} \rangle \right]$$

$$\leq 2\sigma \mathbb{E}_{\xi_{t}} \left[\frac{\|G_{t}\|^{2}}{b_{t+1}^{2}} \right] + \frac{\|\nabla F_{t}\|^{2}}{2\sqrt{b_{t}^{2} + \|\nabla F_{t}\|^{2} + \sigma^{2}}}.$$

and, therefore, back to (1),

$$\frac{\mathbb{E}_{\xi_t} \left[F_{t+1} \right] - F_t}{\eta} \le \frac{\eta L}{2} \mathbb{E}_{\xi_t} \left[\frac{\|G_t\|^2}{b_{t+1}^2} \right] + 2\sigma \mathbb{E}_{\xi_t} \left[\frac{\|G_t\|^2}{b_{t+1}^2} \right] - \frac{\|\nabla F_t\|^2}{2\sqrt{b_t^2 + \|\nabla F_t\|^2 + \sigma^2}}.$$

Rearranging,

$$\frac{\left\|\nabla F_{t}\right\|^{2}}{2\sqrt{b_{t}^{2}+\left\|\nabla F_{t}\right\|^{2}+\sigma^{2}}} \leq \frac{F_{t}-\mathbb{E}_{\xi_{t}}\left[F_{t+1}\right]}{\eta} + \frac{4\sigma+\eta L}{2}\mathbb{E}_{\xi_{t}}\left[\frac{\|G_{t}\|^{2}}{b_{t+1}^{2}}\right]$$

Proof

We take the expectation w.r.t. $\xi_{t-1}, \xi_{t-2}, \dots, \xi_1$, and arrive at the recursion(Law of total expectation)

$$\mathbb{E}\left[\frac{\left\|\nabla F_{t}\right\|^{2}}{2\sqrt{b_{t}^{2}+\left\|\nabla F_{t}\right\|^{2}+\sigma^{2}}}\right] \leq \frac{\mathbb{E}\left[F_{t}\right]-\mathbb{E}\left[F_{t+1}\right]}{\eta} + \frac{4\sigma + \eta L}{2}\mathbb{E}\left[\frac{\left\|G_{t}\right\|^{2}}{b_{t+1}^{2}}\right]$$

Taking t = T and summing up from k = 0 to k = T - 1

$$\sum_{k=0}^{T-1} \mathbb{E} \left[\frac{\|\nabla F_{k}\|^{2}}{2\sqrt{b_{k}^{2} + \|\nabla F_{k}\|^{2} + \sigma^{2}}} \right]$$

$$\leq \frac{F_{0} - F^{*}}{\eta} + \frac{4\sigma + \eta L}{2} \mathbb{E} \sum_{k=0}^{T-1} \left[\frac{\|G_{k}\|^{2}}{b_{k+1}^{2}} \right]$$

$$\leq \frac{F_{0} - F^{*}}{\eta} + \frac{4\sigma + \eta L}{2} \log \left(10 + \frac{20T(\sigma^{2} + \gamma^{2})}{b_{0}^{2}} \right)$$
(5)

where the second inequality we apply Lemma (3.2)

Proof

and then Jensen's inequality to bound the summation:

$$\mathbb{E}\sum_{k=0}^{T-1} \left[\frac{\|G_k\|^2}{b_{k+1}^2} \right] \le \mathbb{E}\left[1 + \log\left(1 + \sum_{k=0}^{T-1} \|G_k\|^2 / b_0^2 \right) \right]$$

$$\le \log\left(10 + \frac{20T\left(\sigma^2 + \gamma^2\right)}{b_0^2} \right).$$
(6)

since

$$\mathbb{E}\left[b_k^2 - b_{k-1}^2\right] \le \mathbb{E}\left[\|G_k\|^2\right]$$

$$\le 2\mathbb{E}\left[\|G_k - \nabla F_k\|^2\right] + 2\mathbb{E}\left[\|\nabla F_k\|^2\right]$$

$$< 2\sigma^2 + 2\gamma^2$$
(7)

Proof of the 1st bound for Theorem 2.1

For the term on LHS in equation (5), we apply Hölder's inequality,

$$\frac{\mathbb{E}|XY|}{\left(\mathbb{E}|Y|^3\right)^{\frac{1}{3}}} \leq \left(\mathbb{E}|X|^{\frac{3}{2}}\right)^{\frac{2}{3}}$$

with
$$X = \left(\frac{\|\nabla F_k\|^2}{\sqrt{b_k^2 + \|\nabla F_k\|^2 + \sigma^2}}\right)^{\frac{2}{3}}$$
 and $Y = \left(\sqrt{b_k^2 + \|\nabla F_k\|^2 + \sigma^2}\right)^{\frac{2}{3}}$.

$$\mathbb{E}\left[\frac{\|\nabla F_{k}\|^{2}}{2\sqrt{b_{k}^{2} + \|\nabla F_{k}\|^{2} + \sigma^{2}}}\right] \geq \frac{\left(\mathbb{E}\|\nabla F_{k}\|^{\frac{4}{3}}\right)^{\frac{3}{2}}}{2\sqrt{\mathbb{E}\left[b_{k}^{2} + \|\nabla F_{k}\|^{2} + \sigma^{2}\right]}}$$

$$\geq \frac{\left(\mathbb{E}\left\|\nabla F_{k}\right\|^{\frac{4}{3}}\right)^{\frac{3}{2}}}{2\sqrt{b_{0}^{2}+2(k+1)\left(\gamma^{2}+\sigma^{2}\right)}}$$

where the last inequality is due to inequality (7).

Proof of the 1st bound for Theorem 2.1

Thus (5) arrives at the inequality

$$\begin{split} & \frac{T \min_{k \in [T-1]} \left(\mathbb{E} \left[\|\nabla F_k\|^{\frac{4}{3}} \right] \right)^{\frac{2}{2}}}{2 \sqrt{b_0^2 + 2T \left(\gamma^2 + \sigma^2 \right)}} \\ & \leq \frac{F_0 - F^*}{\eta} + \frac{4\sigma + \eta L}{2} \left(\log \left(1 + \frac{2T \left(\sigma^2 + \gamma^2 \right)}{b_0^2} \right) + 1 \right). \end{split}$$

Multiplying by $\frac{2b_0+2\sqrt{2}T(\gamma+\sigma)}{T}$, the above inequality gives

$$\min_{k \in [T-1]} \left(\mathbb{E} \left[\|\nabla F_k\|^{\frac{4}{3}} \right] \right)^{\frac{3}{2}} \leq \underbrace{\left(\frac{2b_0}{T} + \frac{2\sqrt{2}(\gamma + \sigma)}{\sqrt{T}} \right) C_F}_{C_T}$$

$$C_F = \frac{F_0 - F^*}{\eta} + \frac{4\sigma + \eta L}{2} \log \left(\frac{20T \left(\sigma^2 + \gamma^2\right)}{b_0^2} + 10 \right).$$

Proof of the 1st bound for Theorem 2.1

Finally, the bound is obtained by Markov's Inequality:

$$\mathbb{P}\left(\min_{k\in[T-1]}\|\nabla F_k\|^2 \ge \frac{C_T}{\delta^{3/2}}\right) = \mathbb{P}\left(\min_{k\in[T-1]}\left(\|\nabla F_k\|^2\right)^{2/3} \ge \left(\frac{C_T}{\delta^{3/2}}\right)^{2/3}\right) \\
\le \delta \frac{\mathbb{E}\left[\min_{k\in[T-1]}\|\nabla F_k\|^{4/3}\right]}{C_T^{2/3}} \\
\le \delta$$

where in the second step Jensen's inequality is applied to the concave function $\phi(x) = \min_k h_k(x)$.

Proof of the 2nd bound for Theorem 2.1

First, observe with probability $1 - \delta'$ that

$$\sum_{i=0}^{T-1} \|\nabla F_i - G_i\|^2 \le \frac{T\sigma^2}{\delta'}$$

Let $Z = \sum_{k=0}^{T-1} \|\nabla F_k\|^2$, then

$$\begin{aligned} b_{T-1}^2 + \|\nabla F_{T-1}\|^2 + \sigma^2 &= b_0^2 + \sum_{i=0}^{T-2} \|G_i\|^2 + \|\nabla F_{T-1}\|^2 + \sigma^2 \\ &\leq b_0^2 + 2\sum_{i=0}^{T-1} \|\nabla F_i\|^2 + 2\sum_{i=0}^{T-2} \|\nabla F_i - G_i\|^2 + \sigma^2 \\ &\leq b_0^2 + 2Z + 2T\frac{\sigma^2}{\delta'} \end{aligned}$$

Proof of the 2nd bound for Theorem 2.1

In addition, from inequality (5), i.e.,

$$\mathbb{E}\left[\frac{\sum_{k=0}^{T-1} \|\nabla F_{k}\|^{2}}{2\sqrt{b_{T-1}^{2} + \|\nabla F_{T-1}\|^{2} + \sigma^{2}}}\right]$$

$$\leq \frac{F_{0} - F^{*}}{\eta} + \frac{4\sigma + \eta L}{2} \log\left(10 + \frac{20T(\sigma^{2} + \gamma^{2})}{b_{0}^{2}}\right) \triangleq C_{F}$$

we have with probability $1 - \hat{\delta} - \delta'$ that

$$\frac{C_F}{\hat{\delta}} \ge \frac{\sum_{k=0}^{T-1} \|\nabla F_k\|^2}{2\sqrt{b_{T-1}^2 + \|\nabla F_{T-1}\|^2 + \sigma^2}} \ge \frac{Z}{2\sqrt{b_0^2 + 2Z + 2T\sigma^2/\delta'}}$$

Proof of the 2nd bound for Theorem 2.1

That is equivalent to solve the following quadratic equation

$$Z^2 - \frac{8C_F^2}{\hat{\delta}^2}Z - \frac{4C_F^2}{\hat{\delta}^2}\left(b_0^2 + \frac{2T\sigma^2}{\delta'}\right) \le 0$$

which gives

$$\begin{split} Z &\leq \frac{4C_F^2}{\hat{\delta}^2} + \sqrt{\frac{16C_F^4}{\hat{\delta}^4} + \frac{4C_F^2}{\hat{\delta}^2} \left(b_0^2 + \frac{2T\sigma^2}{\delta'}\right)} \\ &\leq \frac{8C_F^2}{\hat{\delta}^2} + \frac{2C_F}{\hat{\delta}} \left(b_0 + \frac{\sqrt{2T}\sigma}{\sqrt{\delta'}}\right) \end{split}$$

Let $\hat{\delta} = \delta' = \frac{\delta}{2}$. Replacing Z with $\sum_{k=0}^{T-1} \|\nabla F_k\|^2$ and dividing both side with T we have with probability $1 - \delta$

$$\min_{k \in [T-1]} \|\nabla F_k\|^2 \le \frac{4C_F}{T\delta} \left(\frac{8C_F}{\delta} + 2b_0 \right) + \frac{8\sigma C_F}{\delta^{3/2} \sqrt{T}}$$

Outline

1. Introduction

- 2. AdaGrad-Norm Convergence
- 3. Proof of Theorem 2.1

4. Proof of Theorem 2.2

Theorem 2.2 (AdaGrad-Norm: convergence in deterministic setting)

Suppose $F \in \mathbb{C}^1_L$ and $F^* = inf_x F(x) > -\infty$. Consider AdaGrad-Norm in deterministic setting with following update,

$$x_t = x_{t-1} - \frac{\eta}{b_t} \nabla F(x_{t-1}), \quad b_t^2 = b_{t-1}^2 + ||\nabla F(x_{t-1})||^2$$

then
$$\min_{t \in [T]} ||\nabla F(x_t)||^2 \le \varepsilon$$
 after

(1)
$$T = 1 + \left\lceil \frac{1}{\varepsilon} \left(\frac{4(F(x_0) - F^*)^2}{\eta^2} + \frac{2b_0(F(x_0) - F^*)}{\eta} \right) \right\rceil$$
 if $b_0 \ge \eta L$
(2) $T = 1 + \left\lceil \frac{1}{\varepsilon} \left(2L(F(x_0) - F^*) + \left(\frac{2(F(x_0) - F^*)}{\eta} + \eta L C_{b_0} \right)^2 + (\eta L)^2 (1 + C_{b_0}) - b_0^2 \right) \right\rceil$ if $b_0 < \eta L$. Here $C_{b_0} = 1 + 2\log\left(\frac{\eta L}{b_0}\right)$.

Lemma 4.1

Fix $\varepsilon \in (0,1]$ and C > 0. For any non-negative a_0, a_1, \ldots , the dynamical system

$$b_0 > 0; \quad b_{t+1}^2 = b_t^2 + a_t$$

has the property that after $T = \left\lceil \frac{C^2 - b_0^2}{\varepsilon} \right\rceil + 1$ iterations, either min k=0:T-1 $a_k \leq \varepsilon$, or $b_T \geq \eta L$.

 \Rightarrow After an initial number of steps $T = \left[\frac{(\eta L)^2 - b_0^2}{\varepsilon}\right] + 1$, either we have already reached a point x_k s.t. $\|\nabla F\left(x_k\right)\|^2 \leq \varepsilon$, or else $b_T \geq \eta L$

Lemma 4.2

Suppose $F \in \mathbb{C}^1_L$ and $F^* = \inf_x F(x) > -\infty$. Denote by $k_0 \ge 1$ the first index such that $b_{k_0} \ge \eta L$. Then for all $b_k < \eta L, k = 0, 1, \ldots, k_0 - 1$

$$F_{k_0-1} - F^* \le F_0 - F^* + \frac{\eta^2 L}{2} \left(1 + 2 \log \left(\frac{b_{k_0-1}}{b_0} \right) \right)$$

 $\Rightarrow \{F(x_k)\}_{k=0}^{\infty}$ is a bounded sequence for any value of $b_0 > 0$

Proof

By Lemma 4.1, if min $_{k\in[T-1]}\|\nabla F\left(x_{k}\right)\|^{2}\leq\varepsilon$ is not satisfied after $T=\left\lceil\frac{(\eta L)^{2}-b_{0}^{2}}{\varepsilon}\right\rceil+1$ steps, then there exits a first index $1\leq k_{0}\leq T$ s.t. $\frac{b_{k_{0}}}{\eta}>L$. By Lemma 3.1, for $j\geq0$

$$\begin{aligned} F_{k_{0}+j} &\leq F_{k_{0}+j-1} + \langle \nabla F_{k_{0}+j-1}, (x_{k_{0}+j} - x_{k_{0}+j-1}) \rangle + \frac{L}{2} ||(x_{k_{0}+j} - x_{k_{0}+j-1})||^{2} \\ &= F_{k_{0}+j-1} - \frac{\eta}{b_{k_{0}+j}} \left(1 - \frac{\eta L}{2b_{k_{0}+j}} \right) ||\nabla F_{k_{0}+j-1}||^{2} \\ &\leq F_{k_{0}-1} - \sum_{\ell=0}^{j} \frac{\eta}{2b_{k_{0}+\ell}} ||\nabla F_{k_{0}+\ell-1}||^{2} \\ &\leq F_{k_{0}-1} - \frac{\eta}{2b_{j}} \sum_{\ell=0}^{j} ||\nabla F_{k_{0}+\ell-1}||^{2}. \end{aligned}$$

Proof

Let $Z = \sum_{k=k_0-1}^{M-1} \|\nabla F_k\|^2$, it follows that

$$\frac{2\left(F_{k_0-1} - F^*\right)}{\eta} \geq \frac{2\left(F_0 - F_M\right)}{\eta} \geq \frac{\sum_{k=k_0-1}^{M-1} \|\nabla F_k\|^2}{b_M} \geq \frac{Z}{\sqrt{Z + b_{k_0-1}^2}}.$$

Solving the quadratic inequality for Z,

$$\sum_{k=k_0-1}^{M-1} \|\nabla F_k\|^2 \leq \frac{4 \left(F_{k_0-1} - F^*\right)^2}{\eta^2} + \frac{2 \left(F_{k_0-1} - F^*\right) b_{k_0-1}}{\eta}$$

If $k_0=1$, the stated result holds by multiplying both side by $\frac{1}{M}$. Otherwise, $k_0>1$ From Lemma 4.2, we have

$$F_{k_0-1} - F^* \le F_0 - F^* + \frac{\eta^2 L}{2} \left(1 + 2 \log \left(\frac{\eta L}{b_0} \right) \right)$$

Proof

Replacing $F_{k_0-1} - F^*$ in (15) by above bound, we have

$$\sum_{k=k_{0}-1}^{M-1} \|\nabla F_{k}\|^{2}$$

$$\leq \left(\frac{2(F_{0}-F^{*})}{\eta} + \eta L\left(1 + 2\log\left(\frac{\eta L}{b_{0}}\right)\right)\right)^{2}$$

$$+ 2L(F_{0}-F^{*}) + (\eta L)^{2}\left(1 + 2\log\left(\frac{\eta L}{b_{0}}\right)\right) = C_{M}$$

Thus, we are assured that

$$\min_{k=0:T+M-1} \left\| \nabla F_k \right\|^2 \le \varepsilon$$

where
$$T \leq \frac{L^2 - b_0^2}{\varepsilon}$$
 and $M = \frac{C_M}{\varepsilon}$.

Proof of Lemma 4.1

If $b_0 \geq \eta C$, we are done. Else $b_0 < C$. Let T be the smallest integer such that $T \geq \frac{C^2 - b_0^2}{\varepsilon}$. Suppose $b_T < C$. Then

$$C^2 > b_T^2 = b_0^2 + \sum_{k=0}^{T-1} a_k > b_0^2 + T \min_{k \in [T-1]} a_k \quad \Rightarrow \quad \min_{k \in [T-1]} a_k \le \frac{C^2 - b_0^2}{T}$$

Hence, for $T \geq \frac{C^2 - b_0^2}{\varepsilon_0}$, $\min_{k \in [N-1]} a_k \leq \varepsilon$. Suppose $\min_{k \in [T-1]} a_k > \epsilon$, then from above inequalities we have $b_T > C$.

Proof of Lemma 4.2

Suppose $k_0 \geq 1$ is the first index such that $b_{k_0} \geq \eta L$. By Lemma 3.1, for $j \leq k_0 - 1$

$$F_{j+1} \le F_j - \frac{\eta}{b_{j+1}} \left(1 - \frac{\eta L}{2b_{j+1}} \right) \|\nabla F_j\|^2$$

$$\le F_j + \frac{\eta^2 L}{2b_{j+1}^2} \|\nabla F_j\|^2 \le F_0 + \sum_{\ell=0}^j \frac{\eta^2 L}{2b_{\ell+1}^2} \|\nabla F_\ell\|^2$$

$$\Rightarrow F_{k_{0}-1} - F_{0} \leq \frac{\eta^{2} L}{2} \sum_{i=0}^{k_{0}-2} \frac{\|\nabla F_{i}\|^{2}}{b_{i+1}^{2}} \leq \frac{\eta^{2} L}{2} \sum_{i=0}^{k_{0}-2} \frac{(\|\nabla F_{i}\|/b_{0})^{2}}{\sum_{\ell=0}^{i} (\|\nabla F_{\ell}\|/b_{0})^{2} + 1}$$

$$\leq \frac{\eta^{2} L}{2} \left(1 + \log\left(1 + \sum_{\ell=0}^{k_{0}-2} \frac{\|\nabla F_{\ell}\|^{2}}{b_{0}^{2}}\right)\right) \quad \text{by Lemma 3.2}$$

$$\leq \frac{\eta^{2} L}{2} \left(1 + \log\left(\frac{b_{k_{0}-1}^{2}}{b_{0}^{2}}\right)\right) \qquad \blacksquare$$